
 
 
 
 
 
 
Economic Computation and Economic Cybernetics Studies and Research, Issue 3/2021; Vol. 55 
_______________________________________________________________________________ 

247 
 

Professor Xiwen QIN, PhD 
E-mail: qinxiwen@ccut.edu.cn 
School of Mathematics and Statistics  
Changchun University of Technology  
Dingxin XU, Master 
E-mail: xudingxin@126.com 
School of Mathematics and Statistics  
Changchun University of Technology  
Jiajing GUO, Master  
E-mail: 15543511078@163.com 
School of Mathematics and Statistics  
Changchun University of Technology  
 
 
CORRELATION ANALYSIS AND PREDICTION OF STOCK 
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Abstract. For nonlinear non-stationary sequences, variational mode 
decomposition (VMD) is a novel, efficient, adaptive, quasi-orthogonal, completely 
non-recursive data decomposition method, which still has a solid theoretical basis. 
It iteratively searches for the optimal solution of the variational model to determine 
the frequency center and bandwidth of each component, so that the frequency 
domain segmentation of the signal and the effective separation of components can 
be adaptively realized. At the same time, the Lasso method is an effective method 
for performing variable screening. Therefore, this paper proposes a least absolute 
shrinkage and selection operator (LASSO) regression method based on the 
effective variable selection of components derived from VMD decomposition. The 
VMD-LASSO model is established for stock data. It is found that there is a strong 
interaction between the two stocks, and the influence of each component is one-to-
one. VMD-LASSO model is used to predict stock series, and the results are 
compared with those of three traditional methods. The results show that the 
proposed model has higher prediction accuracy. 
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1. Introduction 
A time series is a collection of values that are arranged at the same or 

different intervals in order of appearance. Time series data is widely used in 
various fields of natural sciences and social sciences, such as stock prices(Xiaoli 
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Zhou & Zhixiong Wu ,2016), airline passenger flow(Mao et al.,2015), electricity 
demand(Wang et al.,2014), crude oil prices (Jianwei et al.,2017) and so on.  

The actual time series are generally non-linear and non-stationary and 
multivariate. However, the current frequency domain analysis method for nonlinear 
and non-stationary data is not sufficient, and the selection of effective variables for 
multiple time series is also a difficult point. Therefore, the exploration of effective 
variable selection and frequency domain analysis methods is urgently needed to be 
solved. 

In fact, the essence of time series analysis is still to establish a regression 
model. For regression models, the accuracy of the models depends mainly on the 
choice of variables and the value of regression parameters. Considering the general 
linear regression model, there are two shortcomings. The first is the problem of 
prediction accuracy, followed by the interpretability of the model. Robert 
Tibshirani put forward a new variable selection method in 1996——Least Absolute 
Shrinkage and Selection Operator（LASSO）(Tibshirani R,1996). Based on the 
sparsity of Lasso solution and the stability of variable selection, it has been widely 
applied in biomedicine, optics and other fields (Krissinel E & Henrick K, 2004). 

Most of the traditional time-frequency analysis methods have limitations, 
which makes the traditional methods have a limited effect on the local feature 
analysis of nonlinear non-stationary signals, such as local time features or local 
frequency features. In 1987, wavelet first appeared as an analytical basis in 
multiresolution theory (Jin Yuzhu, 2013). Since the wavelet analysis was put 
forward, it has made outstanding achievements in the perfection of mathematical 
theory and the extensiveness of mathematical applications. Wavelet analysis is also 
widely used for nonlinear non-stationary time series. A wavelet-based approach to 
functional linear regression has received some attention in recent literature. In this 
context, a wavelet-based LASSO regression method is proposed (Zhao et al., 2012). 
Wavelets have some drawbacks, such as lack of adaptability, and wavelet basis 
functions need to be pre-selected. Aiming at the shortage of wavelets, Huang et al. 
proposed the Empirical Mode Decomposition (EMD) method. It can adaptively 
decompose complex signals into some intrinsic mode functions (IMF). Then EMD 
became a popular method in signal processing. EMD regression method is 
proposed, which shows better prediction performance (Huang et al., 1998; Wu & 
Huang, 2004). Combining the advantages of EMD and LASSO, a LASSO 
regression method based on EMD is generated (Lei et al., 2016). The method uses 
the time-frequency structure in the data to reveal the interactions between the two 
variables, so that the future events can be predicted more accurately. However, 
there are limitations in the EMD method, such as modal mixing and endpoint 
effects, noise sensitivity and selection of interpolation methods. Based on empirical 
mode decomposition, Wu and Huang proposed the Ensemble Empirical mode 
decomposition (EEMD) method. This method applies noise-assisted analysis to 
empirical mode decomposition to promote anti-aliasing decomposition. It solves an 
important defect mode aliasing phenomenon in EMD and embodies the superiority 
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of EEMD (Wu & Huang, 2009). A regularized EEMD for reducing the 
decomposition error is proposed, called LASSO EEMD. This method has better 
performance than cubic regression in estimating blood flow velocity (Shen & Lee, 
2012). To a certain extent, EEMD overcomes the modal aliasing phenomenon of 
EMD, but the analysis results still have modal aliasing (Zhou et al., 2013). 

A new signal adaptive decomposition method proposed by Dragomiretskiy 
and Zosso in 2014: Variational Mode Decomposition (VMD). The method is based 
on Wiener filtering, one- dimensional Hilbert transform and analytical signals, 
heterodyne demodulation and other theories. Its greatest advantage is that it 
overcomes the lack of mathematical theory support for empirical mode 
decomposition methods, and is not as sensitive to noise as empirical mode 
decomposition. VMD can simultaneously estimate the modalities of different 
center frequencies. The essence is a set of adaptive Wiener filter banks, which is 
different from EMD and EEMD in non-recursive mode decomposition, avoiding 
the envelope estimation error caused by recursive mode decomposition. 
Accumulate and overcome the end effect (Dragomiretskiy & Zosso, 2014). Since 
its introduction, it has been rapidly applied to the field of signal analysis and fault 
diagnosis of rotating machinery and achieved good results. Liu X Y et al proposed 
a bearing fault feature extraction method based on VMD and ICA. This method 
improves the decomposition efficiency, solves the problem that the signal is 
susceptible to noise interference, and realizes the accurate diagnosis of bearing 
fault (Liu et al., 2017). Wang Xin and Yan Wenyuan proposed a fault diagnosis 
method for rolling bearing based on VMD and support vector machine (SVM). 
This method can effectively classify the working state and fault type of bearing in a 
small number of samples (Wang & Yan, 2017). Jianwei E, Yanling Bao and Jimin 
Ye proposed a combination method, which including VMD, ICA and ARIMA. This 
method is used to analyze the influence factors of crude oil price and predict the 
future crude oil price. It also proved that the proposed method can forecast the 
crude oil price more accurately (Jianwei et al., 2017).Therefore, In light of the 
above work, we propose a hybrid methodology, which combines the variational 
mode decomposition method with LASSO regression (VMD-based Lasso 
regression). 

The structure of this present paper is as follows: In Section2, we recall 
basic theory about VMD and LASSO. Empirical analysis is applied to stock index 
data from the Chinese market to test the modeling process, and compare its 
performance with that of three existing methods is performing in Section 3. Section 
4 is the discussion. 

 
2. Methodology 
In the process of modeling, a binary time series is constructed firstly. Then, 

one of the time series is decomposed by VMD, and the resulting IMFs are treated 
as the independent variable X. Finally, take another time series as the dependent 
variable Y, using LASSO to select effective variables, and establish LASSO 
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Where f  is the original signal, δ is the Dirac distribution, k  is the number of 

modes, { }1, ,k ku u u=   denotes each mode function, { }1, ,k kω ω ω= 
 
indicates each 

center frequency, 1

k

k k ==  represents the sum of all mode function, ∗  denotes 

convolution.  
In order to obtain the optimal solution of the variational model, the 

quadratic penalty term and Largrangian multipliers are brought in, the function is 
constructed as Eq.(2): 

{ } { }( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

, ,

,

kj t
k k t kk

k kk k

j
L u t u t e

t

f t u t t f t u t

ωω λ α δ
π

λ

−  = ∂ + ∗    

+ − + −



 

           (2) 

The Lagrange function is transformed from the time domain to the 
frequency domain, and the extremum is obtained. The frequency domain 
expressions of the modal component and the center frequency are obtained 
respectively by Eq. (3) and Eq. (4): 
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                         (4) 

Then, the alternating direction multiplier algorithm (ADMM) is used to 
find the optimal solution of the constrained variational model, so that the original 
signal can be decomposed into K narrow mode components. 
In summary, the steps of the VMD algorithm are as follows: 
Step 1.Initialize { }1

ku ,{ }1
kω , 1λ  and n  to 0； 

Step2.The value of ku , ωk , and λ  is updated respectively according to 

Eq.(3),Eq.(4) and the following formula Eq. (5): 

( ) ( ) ( ) ( )1 1ˆˆ ˆ ˆn n n
k

k

f uλ ω λ ω τ ω ω+ + ← + − 
 


                

(5) 

Step 3.Repeat step 2 until the iteration termination condition is satisfied: 
2 21

2 2
ˆ ˆ ˆ , 0n n n

k k k
k

u u u ε ε+ − < >                    (6) 

Where ε  is a given accuracy requirement. 
2.2 Improved LASSO algorithm based on LARS   
In order to automatically select variables simultaneously, Tibshirani (1996) 

proposed a new method called LASSO, which preserves the good features of 
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subset selection and ridge regression (Tibshirani R,1996 ). LASSO adds penalty 
items on the basis of least squares estimation. 
The LASSO estimate is the solution to 

[ ]
2

0
1 1 1

arg min . . 0,
p pn

i ij j j
i j j

y x s t s
β

β β β λ
= = =

   − − ≤ ∈ ∞  
   

            (7) 

The penalty term of LASSO is put into the objective function through the Lagrange 
multiplier method, which constitutes a goal optimization problem. The objective 
function is as follows: 

2

0
1 1 1

arg min
p pn

i ij j j
i j j

y x
β

β β λ β
= = =

   − − +  
   

  
              

  (8) 

where λ  is a tuning parameter, [ ]0,λ ∈ ∞ ,which will affect the degree of 

compression. The smaller λ , the smaller the degree of compression, the more 
variables are retained; the larger λ , the greater the degree of compression, the less 
variables are retained. 

The essence of the LASSO variable selection is to use the absolute value of 
the model coefficients as a penalty term to limit the coefficients so that the model 
coefficients with small absolute values are compressed to zero. The two purposes 
of variable selection and parameter estimation are completed at the same time, 
however, the variable selection and parameter estimation of the conventional 
method are performed separately. LASSO better overcomes the shortcomings of 
traditional variable selection， and balances the accuracy and interpretability of the 
regression model. LASSO is a biased estimation method for dealing with 
multicollinearity. By increasing the deviation and reducing the partial variance, the 
mean square error is minimized. 

Since LASSO has successfully overcome the shortcomings of traditional 
variable selection methods, this method has attracted a lot of attention in the field 
of regression and classification. Many researchers have tried to design effective 
algorithms so as to take advantages of this approach. Including the shooting 
algorithm (Fu, 1998), the homotopy algorithm (Osborne & Turlach, 2000), and the 
LARS algorithm (Bradley et al., 2004). The LARS algorithm provides an 
especially effective solution to computational problems in LASSO. It is based on 
the forward selection algorithm and the forward gradient algorithm. It gradually 
improves the computational complexity and reduces the computational complexity 
while preserving the information correlation as much as possible. 
The basic steps of the LARS algorithm are as follows: 
Step 1. Begin with 1 2, , , 0β β β = p , and = −r y y . 
Step 2. Determining the correlation between covariates and the residual, and find 
the predictor jx  most correlated with r . 
Step 3. Moving β j  from 0 towards its least-squares coefficient ,jx r , until some 
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other covariate kx  has as much correlation with the current residual as kx . 
Step 4. Moving β j  and β k  in the direction defined by their joint least squares 
coefficient of the current residual on ( ),j kx x , until some other covariate lx  has as 
much correlation with the current residual. 
Step 5. Continue in this way until all p  predictors have been entered. After 

( )min 1,N p−  steps, we arrive at the full least-squares solution. 
2.3 Evaluation criteria of forecasting accuracy 
The present study performed other model performance metrics, including 

the Relative Error (RE), Mean Absolute Deviation (MAE), Mean-Square Error 
(MSE), Root Mean Square Error (RMSE), Mean-Square Error adjusted for 
heteroskedasticity (HMAE), and Mean Absolute Deviation adjusted for 
heteroskedasticity (HMSE), to confirm the superiority of the VMD-LASSO model 
(see Equations 9–14). In fact, the forecasting performance evaluation criteria used 
in this paper are also well employed in a number of previous studies (Brailsford & 
Faff, 1996; Lopez, 2001; Marcucci, 2005; Wei et al., 2010). In all metrics, ty  

represents the observed values at time t , ˆty  represents the forecasting values at 

time t . 
ˆ

100%t t

t

y y
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y

−
= ×                         (9) 
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ˆ /
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t t
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t t
t

RMSE y y n
=

= −
                   

 (14) 

 
3. Correlation analysis and prediction of the stock market 
The work aims to use the proposed method to build a model, and finding 

the interaction between the two stock markets. The experimental contents are 
mainly divided into three parts. In the first subsection, the two series are 
decomposed by VMD; In the second subsection, each component of one of them is 
used as the dependent variable and all components of the other sequence are 
subjected to LASSO regression; the third subsection, decomposition one of the two 
variables, the undecomposed variable is used as the dependent variable, and the 
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Table 2. Relative Errors 

The result of prediction shows in the Table 1 and Table 2, it is found that 
the prediction accuracy of the proposed model is higher than that of the other three 
basic methods. The prediction accuracy between our method and the third method 
is very similar, but obviously superior to this method. In summary, the method 
proposed in this paper finds real relationships between variables and provides 
highly accurate predictions. 

Table 3.Evaluation Citeria for Frecasting Acuracy 
Method MSE MAE RMSE HMSE HMAE 

VMD-LASSO method 375274.2 506.88 612.596 0.003 0.046 
Least square method 624782.3 790.08 790.432 0.005 0.071 

VMD-Least square method 832940.6 884.84 912.656 0.006 0.081 
VMD- Ridge method 537390.5 603.50 733.069 0.004 0.054 

The evaluation criteria for the prediction accuracy of the four models are 
listed in table 3, including MSE, MAE, RMSE, HMSE and HMAE. It can be found 
easily from table 3 that five values of VMD-LASSO model are smaller than those 
of the others. Therefore, it also verifies the view that the model proposed in this 
paper has higher prediction accuracy and better prediction effect. 

4. Conclusion 
This paper presents a LASSO regression process based on VMD method, 

which identifies the relationship between two variables through the time-frequency 
structure of data sets. Data analysis shows that the proposed modeling process can 
accurately find the real independent variables (decomposition components) 
affecting the dependent variables, and the analysis process finds that there is a 
long-term interaction between the two Chinese markets. The model established by 
this method can produce higher precision prediction value. 

The modeling process proposed in this paper has several advantages over 
ordinary methods: (1) VMD method can decompose time-frequency data into 
multiple components, which makes it possible to select ariables between two 
columns of data; (2) Since the inherent modal components obtained by VMD are 
orthogonal, it is reasonable to select variables through LASSO; (3) LASSO 
regression can effectively select the independent variable components with the 
greatest influence on dependent variables; (4) The proposed modeling method can 
give better prediction accuracy than the traditional model. 
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